Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth
نویسندگان
چکیده
Axillary bud outgrowth determines shoot architecture and is under the control of endogenous hormones and a fine-tuned gene-expression network, which probably includes small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets within axillary buds are largely unknown. Here, we employed sRNA next-generation sequencing as well as computational and gene-expression analysis to identify and quantify sRNAs and their targets in vegetative axillary buds of the biofuel crop sugarcane (Saccharum spp.). Computational analysis allowed the identification of 26 conserved miRNA families and two putative novel miRNAs, as well as a number of trans-acting small interfering RNAs. sRNAs associated with transposable elements and protein-encoding genes were similarly represented in both inactive and developing bud libraries. Conversely, sequencing and quantitative reverse transcription-PCR results revealed that specific miRNAs were differentially expressed in developing buds, and some correlated negatively with the expression of their targets at specific stages of axillary bud development. For instance, the expression patterns of miR159 and its target GAMYB suggested that they may play roles in regulating abscisic acid-signalling pathways during sugarcane bud outgrowth. Our work reveals, for the first time, differences in the composition and expression profiles of diverse sRNAs and targets between inactive and developing vegetative buds that, together with the endogenous balance of specific hormones, may be important in regulating axillary bud outgrowth.
منابع مشابه
Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum
In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two...
متن کاملMAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis.
We show that MAX1, a specific repressor of vegetative axillary bud outgrowth in Arabidopsis, acts a positive regulator of the flavonoid pathway, including 11 structural genes and the transcription factor An2. Repression of bud outgrowth requires MAX1-dependent flavonoid gene expression. As the flavonoidless state leads to lateral outgrowth in Arabidopsis, our data suggest that a flavonoid-based...
متن کاملMicroRNAs and Their Regulatory Role in Sugarcane
Sugarcane, one of the most photosynthetically efficient crops, is an important source of sugar and feedstock for green energy and co-generation. The high level of polyploidy and genomic peculiarities in this crop point towards a complex mechanism of regulation for the economically important traits like sugar content, cane yield related traits, resistance to biotic and abiotic stresses etc. The ...
متن کاملEBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.
We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regu...
متن کاملGlobal and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant
DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 64 شماره
صفحات -
تاریخ انتشار 2013